Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-720448

ABSTRACT

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Subject(s)
Coronavirus Infections/immunology , Immunogenicity, Vaccine , Pneumonia, Viral/immunology , Viral Vaccines/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Viral Vaccines/administration & dosage
2.
Cell Host Microbe ; 28(3): 475-485.e5, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-626409

ABSTRACT

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, which engages with host ACE2 receptor for entry. Using an infectious molecular clone of vesicular stomatitis virus (VSV) expressing eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput-imaging-based neutralization assay at biosafety level 2. We also developed a focus-reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. Comparing the neutralizing activities of various antibodies and ACE2-Fc soluble decoy protein in both assays revealed a high degree of concordance. These assays will help define correlates of protection for antibody-based countermeasures and vaccines against SARS-CoV-2. Additionally, replication-competent VSV-eGFP-SARS-CoV-2 provides a tool for testing inhibitors of SARS-CoV-2 mediated entry under reduced biosafety containment.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/therapy , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/therapy , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Green Fluorescent Proteins/genetics , Host Microbial Interactions/immunology , Humans , Immunization, Passive , Neutralization Tests , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Virus Internalization , Virus Replication , COVID-19 Serotherapy
3.
Virology ; 548: 39-48, 2020 09.
Article in English | MEDLINE | ID: covidwho-597506

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is the agent responsible for the coronavirus disease 2019 (COVID-19) global pandemic. SARS-CoV-2 is closely related to SARS-CoV, which caused the 2003 SARS outbreak. Although numerous reagents were developed to study SARS-CoV infections, few have been applicable to evaluating SARS-CoV-2 infection and immunity. Current limitations in studying SARS-CoV-2 include few validated assays with fully replication-competent wild-type virus. We have developed protocols to propagate, quantify, and work with infectious SARS-CoV-2. Here, we describe: (1) virus stock generation, (2) RT-qPCR quantification of SARS-CoV-2 RNA; (3) detection of SARS-CoV-2 antigen by flow cytometry, (4) quantification of infectious SARS-CoV-2 by focus-forming and plaque assays; and (5) validated protocols for virus inactivation. Collectively, these methods can be adapted to a variety of experimental designs, which should accelerate our understanding of SARS-CoV-2 biology and the development of effective countermeasures against COVID-19.


Subject(s)
Betacoronavirus/physiology , Virus Cultivation/methods , Virus Inactivation , Animals , Antigens, Viral/analysis , Betacoronavirus/genetics , Betacoronavirus/growth & development , Betacoronavirus/immunology , Cell Line , Chlorocebus aethiops , Containment of Biohazards , Culture Media , Flow Cytometry , RNA, Viral/analysis , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Vero Cells , Viral Plaque Assay , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL